
Types

Python Numbers
Number data types store numeric values. Number objects are created when

you assign a value to them. For example −

var1 =1

var2 =10

Python supports four different numerical types −

 int (signed integers)

 long (long integers, they can also be represented in octal and hexadecimal)

 float (floating point real values)

 complex (complex numbers)

STRING OPERATION:

The+ operator works with strings, but it is not addition in the mathematical

sense.Instead it performs concatenation , which means joining the strings by
linking
them end-to-end. For example:
>>>first = 10

>>>second = 15

>>>printfirst+second

25

>>>first ='100'

>>>second ='150'

>>>print first + second

100150

BOOLEAN EXPRESSIONS:

Aboolean expression is an expression that is either true or false. The
following examples use the operator

== , which compares two operands and produces

True if they are equal and Falseotherwise:

True and Falseare special values that belong to the type bool

; they are not strings:
>>>type(True)

<type 'bool'>

>>>type(False)

<type 'bool'>

x != y # x is not equal to y

x > y # x is greater than y

x < y # x is less than y

x >= y # x is greater than or equal to y

x <= y # x is less than or equal to y

x is y # x is the same as y

x is not y # x is not the same as Y.

OPERATORS

Operators are the constructs which can manipulate the value of operands.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and

+ is called operator.

TYPES OF OPERATORS
Python language supports the following types of operators.

 Arithmetic Operators

 Comparison (Relational) Operators

 Assignment Operators

 Logical Operators

 Bitwise Operators

Membership Operators
 Identity Operators

Let us have a look on all operators one by one.

Python Arithmetic Operators
Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example

+ Addition Adds values on either side of the operator. a + b =
30

- Subtraction Subtracts right hand operand from left hand operand. a – b = -
10

*
Multiplication

Multiplies values on either side of the operator a * b =
200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and

returns remainder

b % a =

0

** Exponent Performs exponential (power) calculation on operators a**b
=10 to

the
power 20

// Floor Division - The division of operands where the
result is the quotient in which the digits after the
decimal point are removed. But if one of the operands

is negative, the result is floored, i.e., rounded away
from zero (towards negative infinity):

9//2 = 4
and
9.0//2.0

= 4.0, -
11//3 =
-4, -

11.0//3
= -4.0

Python Comparison Operators
These operators compare the values on either sides of them and decide the

relation among them. They are also called Relational operators.

Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example

== If the values of two operands are equal, then the condition

becomes true.

(a == b)

is not
true.

!= If values of two operands are not equal, then condition
becomes true.

> If the value of left operand is greater than the value of
right operand, then condition becomes true.

(a > b)
is not
true.

< If the value of left operand is less than the value of right
operand, then condition becomes true.

(a < b)
is true.

>= If the value of left operand is greater than or equal to the
value of right operand, then condition becomes true.

(a >= b)
is not

true.

<= If the value of left operand is less than or equal to the
value of right operand, then condition becomes true.

(a <= b)
is true.

Python Assignment Operators
Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example

= Assigns values from right side operands to left side c = a + b
assigns

operand value of a

+ b into c

+= Add AND It adds right operand to the left operand and assign

the result to left operand

c += a is

equivalent
to c = c +
a

-= Subtract
AND

It subtracts right operand from the left operand and
assign the result to left operand

c -= a is
equivalent
to c = c -

a

*= Multiply

AND

It multiplies right operand with the left operand and

assign the result to left operand

c *= a is

equivalent
to c = c *
a

/= Divide AND It divides left operand with the right operand and
assign the result to left operand

c /= a is
equivalent

to c = c /
ac /= a is
equivalent

to c = c /
a

%= Modulus
AND

It takes modulus using two operands and assign the
result to left operand

c %= a is
equivalent
to c = c

% a

**= Exponent

AND

Performs exponential (power) calculation on

operators and assign value to the left operand

c **= a is

equivalent
to c = c
** a

//= Floor
Division

It performs floor division on operators and assign
value to the left operand

c //= a is
equivalent

to c = c //
a

Python Bitwise Operators
Bitwise operator works on bits and performs bit by bit operation. Assume if

a = 60; and b = 13; Now in binary format they will be as follows −

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

There are following Bitwise operators supported by Python language

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists in

both operands

(a & b)

(means
0000 1100)

| Binary OR It copies a bit if it exists in either operand. (a | b) = 61
(means
0011 1101)

^ Binary XOR It copies the bit if it is set in one operand but
not both.

(a ^ b) =
49 (means

0011 0001)

~ Binary Ones

Complement

It is unary and has the effect of 'flipping' bits. (~a) = -61

(means
1100 0011
in 2's

complement
form due to

a signed

binary
number.

<< Binary Left
Shift

The left operands value is moved left by the
number of bits specified by the right operand.

a << = 240
(means
1111 0000)

>> Binary Right
Shift

The left operands value is moved right by the
number of bits specified by the right operand.

a >> = 15
(means
0000 1111)

Python Logical Operators
There are following logical operators supported by Python language.

Assume variable a holds 10 and variable b holds 20 then

Operator Description Example

and Logical

AND

If both the operands are true then

condition becomes true.

(a and b)

is true.

or Logical OR If any of the two operands are non-zero

then condition becomes true.

(a or b)

is true.

not Logical

NOT

Used to reverse the logical state of its

operand.

Not(a

and b) is

false.

Python Membership Operators
Python’s membership operators test for membership in a sequence, such as

strings, lists, or tuples. There are two membership operators as explained

below.

Operator Description Example

In Evaluates to true if it finds a variable in the specified
sequence and false otherwise.

x in y,
here in

results in
a 1 if x is
a

member
of
sequence

y.

not in Evaluates to true if it does not finds a variable in the

specified sequence and false otherwise.

x not in

y, here
not in
results in

a 1 if x is
not a
member

of
sequence
y.

Python Identity Operators
Identity operators compare the memory locations of two objects. There are

two Identity operators explained below:

Operator Description Example

Is Evaluates to true if the variables on either side of the

operator point to the same object and false
otherwise.

x is y,

here is results
in 1 if id(x)
equals id(y).

is not Evaluates to false if the variables on either side of the
operator point to the same object and true otherwise.

x is not y,
here is

not results in
1 if id(x) is
not equal to

id(y).

EXPRESSIONS:

Anexpression is a combination of values, variables, and operators. A value all by

itself is considered an expression, and so is a variable, so the following are all legal

expressions (assuming that the variable x has been assigned a value):

17

x

x + 17

If you type an expression in interactive mode, the interpreter evaluates it and

displays the result:

>>> 1 + 1

2

But in a script, an expression all by itself doesn’t do anything! This is a common

source of confusion for beginners.

Exercise 2 Type the following statements in the Python interpreter to see what

they do:

5

x = 5

x + 1

Now put the same statements into a script and run it. What is the output? Modify

the script by transforming each expression into a print statement and then run it

again.

Order of operations:

When more than one operator appears in an expression, the order of evaluation

depends on the rules of precedence. For mathematical operators, Python follows

mathematical convention. The acronym PEMDAS is a useful way to remember the

rules:

Parentheses have the highest precedence and can be used to force an expression

to evaluate in the order you want. Since expressions in parentheses are evaluated

first, 2 * (3-1) is 4, and (1+1)**(5-2) is 8. You can also use parentheses to make an

expression easier to read, as in (minute * 100) / 60, even if it doesn’t change the

result.

Exponentiation has the next highest precedence, so 2**1+1 is 3, not 4, and

3*1**3 is 3, not 27.

Multiplication and Division have the same precedence, which is higher than

Addition and Subtraction, which also have the same precedence. So 2*3-1 is 5,

not 4, and 6+4/2 is 8, not 5.

Operators with the same precedence are evaluated from left to right (except

exponentiation). So in the expression degrees / 2 * pi, the division happens first

and the result is multiplied by pi. To divide by 2 π, you can use parentheses or

write degrees / 2 / pi.

DECISION MAKING IN PYTHON

Decision making is anticipation of conditions occurring while execution of

the program and specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce TRUE or

FALSE as outcome. You need to determine which action to take and which

statements to execute if outcome is TRUE or FALSE otherwise.

IF-STATEMENT:

The ifstatement is the simplest form of decision control statement that is frequently used in

making decision .An if statement is a selection control statement based on the value of a given

Boolean expression.

SYNTAX:

The syntax of if statement

If test_expression:

 Statement1

 ………………

 Statement n

Statement x

FLOW CHART:

Python programming language assumes any non-zero and non-

null values as TRUE, and if it is either zero or null, then it is assumed as

FALSE value.

Example:

if x > 0 :

print 'x is positive'

IF-ELSE:

An else statement can be combined with an if statement.

An else statement contains the block of code that executes if the

conditional expression in the if statement resolves to 0 or a FALSE value.

The else statement is an optional statement and there could be at most

only one else statement following if .

Syntax:

The syntax of the if...else statement is −

if expression:

statement(s)

else:

statement(s)

Flow Diagram

Example:

if x%2 == 0 :

print 'x is even'

else :

print'x is odd'

The elif Statement:
The elif statement allows you to check multiple expressions for TRUE and

execute a block of code as soon as one of the conditions evaluates to TRUE.

Similar to the else, the elif statement is optional. However, unlike else, for

which there can be at most one statement, there can be an arbitrary

number of elif statements following an if.

Syntax:

if expression1:

statement(s)

elif expression2:

statement(s)

elif expression3:

statement(s)

else:

statement(s)

Example:

if x < y:

print'x is less than y'

elif x > y:

print'x is greater than y'

else:

print'x and y are equal’

Nested conditionals:

One conditional can also be nested within another. We could have written the trichotomy

example like this:

if x == y:

print'x and y are equal'

else:

if x < y:

print 'x is less than y'

else:

print'x is greater than y'

LOOPS IN PYTHON:

While loop:

The while loop in Python is used to iterate over a block of code as long as the test

expression (condition) is true.

We generally use this loop when we don't know beforehand, the number of

times to iterate.

Syntax:

whiletest_expression:

 Body of while

In Python, the body of the while loop is determined through indentation.Body

starts with indentation and the firstunindented line marks the end.Python

interprets any non-zero value as True. None and 0 are interpreted as False.

Flow chart:

Example:

n = 10

sum = 0

i = 1

while i <= n:

sum = sum + i

 i = i+1

print"The sum is", sum

Syntax of for Loop:

forval in sequence:

 Body of for

Here, val is the variable that takes the value of the item inside the sequence on each
iteration.

Loop continues until we reach the last item in the sequence. The body of for loop is
separated from the rest of the code using indentation.

Flow chart:

Example:

numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

sum = 0

forval in numbers:

 sum = sum+val

print("The sum is", sum)

Python break statement

The break statement terminates the loop containing it. Control of the program flows to
the statement immediately after the body of the loop.

If break statement is inside a nested loop (loop inside another loop), break will terminate
the innermost loop.

Syntax of break

Break

Example:

forval in "string":

ifval == "i":

break

print(val)

print("The end")

Python continue statement:

The continue statement is used to skip the rest of the code inside a loop for the current
iteration only. Loop does not terminate but continues on with the next iteration.

Syntax of Continue

Continue

Example:

forval in "string":

ifval == "i":

continue

print(val)

print("The end")

Pass statement:

Occasionally, it is useful to have a body with no statements (usually as a
place keeper for code you haven’t written yet). In that case, you can use

the pass

statement, which does nothing.
if x < 0 :

pass

If you enter an if statement in the Python interpreter, the prompt will change
from three chevrons to three dots to indicate you are in the middle of a
block of statements as shown below:
>>> x = 3

>>>if x < 10:

... print'Small'

...

Small

>>>

Lists
A list is a sequence
Like a string, a list is a sequence of values. In a string, the values are characters;
in a list, they can be any type. The values in list are called elements or sometimes
items.
There are several ways to create a new list; the simplest is to enclose the elements
in square brackets ([and]):

[10, 20, 30, 40]
['crunchy frog', 'ram bladder', 'lark vomit']

The first example is a list of four integers. The second is a list of three strings.
The elements of a list don’t have to be the same type. The following list contains
a string, a float, an integer, and (lo!) another list:
['spam', 2.0, 5, [10, 20]]

A list within another list is nested.
A list that contains no elements is called an empty list; you can create one with
empty brackets, [].
As you might expect, you can assign list values to variables:
>>>cheeses = ['Cheddar', 'Edam', 'Gouda']
>>>numbers = [17, 123]
>>>empty = []
>>>print cheeses, numbers, empty
['Cheddar', 'Edam', 'Gouda'] [17, 123] []

Lists are mutable
The syntax for accessing the elements of a list is the same as for accessing the
characters of a string—the bracket operator. The expression inside the brackets
specifies the index. Remember that the indices start at 0:

>>> print cheeses[0]
Cheddar

Unlike strings, lists are mutable because you can change the order of items in a
list or reassign an item in a list. When the bracket operator appears on the left side
of an assignment, it identifies the element of the list that will be assigned.
>>>numbers = [17, 123]
>>>numbers[1] = 5
>>> print numbers
[17, 5]

list as a relationship between indices and elements. This relationship
is called a mapping; each index “maps to” one of the elements.

The in operator also works on lists.
>>>cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> 'Edam' in cheeses
True
>>> 'Brie' in cheeses
False

Traversing a list
The most common way to traverse the elements of a list is with a forloop. The
syntax is the same as for strings:
for cheese in cheeses:
print cheese

This works well if you only need to read the elements of the list. But if you want
to write or update the elements, you need the indices. A common way to do that
is to combine the functions range and len:
for i in range(len(numbers)):
numbers[i] = numbers[i] * 2

Although a list can contain another list, the nested list still counts as a single
element. The length of this list is four:
['spam', 1, ['Brie', 'Roquefort', 'Pol le Veq'], [1, 2, 3]]

List operations
The + operator concatenates lists:
>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print c
[1, 2, 3, 4, 5, 6]

Similarly, the * operator repeats a list a given number of times:
>>> [0] * 4
[0, 0, 0, 0]
>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

List slices
The slice operator also works on lists:
>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>>t[1:3]
['b', 'c']
>>>t[:4]
['a', 'b', 'c', 'd']
>>>t[3:]
['d', 'e', 'f']

>>>seq[:] # [seq[0], seq[1], ..., seq[-1]]

>>>seq[low:] # [seq[low], seq[low+1], ..., seq[-1]]

>>>seq[:high] # [seq[0], seq[1], ..., seq[high-1]]

>>>seq[low:high] # [seq[low], seq[low+1], ..., seq[high-1]]

>>>seq[::stride] # [seq[0], seq[stride], ..., seq[-1]]

>>>seq[low::stride] # [seq[low], seq[low+stride], ..., seq[-1]]

>>>seq[:high:stride] # [seq[0], seq[stride], ..., seq[high-1]]

>>>seq[low:high:stride] # [seq[low], seq[low+stride], ..., seq[high-1]]

A slice operator on the left side of an assignment can update multiple elements:
>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>>t[1:3] = ['x', 'y']
>>> print t
['a', 'x', 'y', 'd', 'e', 'f']

List methods
Python provides methods that operate on lists. For example, append adds a new
element to the end of a list:
>>> t = ['a', 'b', 'c']
>>>t.append('d')
>>> print t
['a', 'b', 'c', 'd']

extendtakes a list as an argument and appends all of the elements:
>>> t1 = ['a', 'b', 'c']
>>> t2 = ['d', 'e']
>>>t1.extend(t2)

sortarranges the elements of the list from low to high:
>>> t = ['d', 'c', 'e', 'b', 'a']
>>>t.sort()
>>> print t
['a', 'b', 'c', 'd', 'e']

Deleting elements
There are several ways to delete elements from a list. If you know the index of the
element you want, you can use pop:
8.8. Lists and functions 95
>>> t = ['a', 'b', 'c']
>>> x = t.pop(1)
>>> print t
['a', 'c']
>>>print x
b

popmodifies the list and returns the element that was removed. If you don’t
provide an index, it deletes and returns the last element.
If you don’t need the removed value, you can use the deloperator:
>>> t = ['a', 'b', 'c']
>>>del t[1]
>>> print t
['a', 'c']

If you know the element you want to remove (but not the index), you can use

remove:
>>> t = ['a', 'b', 'c']
>>>t.remove('b')
>>> print t
['a', 'c']

To remove more than one element, you can use delwith a slice index:
>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>>del t[1:5]
>>> print t
['a', 'f']

numlist = list()
while (True) :
inp = raw_input('Enter a number: ')
ifinp == 'done' : break
value = float(inp)
numlist.append(value)
average = sum(numlist) / len(numlist)
print 'Average:', average

Lists and strings

A string is a sequence of characters and a list is a sequence of values, but a list
of characters is not the same as a string. To convert from a string to a list of
characters, you can use list:
>>> s = 'spam'
>>> t = list(s)
>>> print t
['s', 'p', 'a', 'm']

The list function breaks a string into individual letters. If you want to break a
string into words, you can use the split method:
>>> s = 'pining for the fjords'
>>> t = s.split()
>>> print t
['pining', 'for', 'the', 'fjords']
>>> print t[2]
the

You can call split with an optional argument called a delimiter specifies which
characters to use as word boundaries.

>>> s = 'spam-spam-spam'
>>>delimiter = '-'
>>>s.split(delimiter)
['spam', 'spam', 'spam']

joinis the inverse of split. It takes a list of strings and concatenates the elements.
joinis a string method, so you have to invoke it on the delimiter and pass
the list as a parameter:

>>> t = ['pining', 'for', 'the', 'fjords']
>>>delimiter = ' '
>>>delimiter.join(t)
'pining for the fjords'

To concatenate strings without spaces, you can use the empty string, '', as a
delimiter.

Objects and values
If we execute these assignment statements:
a = 'banana'
b = 'banana'

We know that a and b both refer to a string, but we don’t know whether they refer
to the same string. There are two possible states:

a='banana'

b='banana'

In one case, a andb refer to two different objects that have the same value. In the
second case, they refer to the same object.

To check whether two variables refer to the same object, you can use the isoperator.
>>> a = 'banana'
>>> b = 'banana'
>>>a is b
True

In this example, Python only created one string object, and both a andb refer to it.

But when you create two lists, you get two objects:

>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>>a is b
False

In this case we would say that the two lists are equivalent, because they have the
same elements, but not identical, because they are not the same object. If two

objects are identical, they are also equivalent, but if they are equivalent, they are
not necessarily identical.

Aliasing
If a refers to an object and you assign b = a, then both variables refer to the same
object:
>>> a = [1, 2, 3]
>>> b = a
>>>b is a
True

The association of a variable with an object is called a reference. In this example,
there are two references to the same object.
An object with more than one reference has more than one name, so we say that
the object is aliased.
If the aliased object is mutable, changes made with one alias affect the other

>>>b[0] = 17
>>> print a
[17, 2, 3]

Tuples

A tupleis a sequence of values much like a list. The values stored in a tuple can
be any type, and they are indexed by integers. The important difference is that
tuples are immutable.

Syntactically, a tuple is a comma-separated list of values:
>>> t = 'a', 'b', 'c', 'd', 'e'

>>> t = ('a', 'b', 'c', 'd', 'e')

To create a tuple with a single element, you have to include the final comma:
>>> t1 = ('a',)

Without the comma Python treats ('a') as an expression with a string in parentheses
that evaluates to a string:
>>> t2 = ('a')
>>>type(t2)
<type 'str'>

Another way to construct a tuple is the built-in function tuple. With no argument,
it creates an empty tuple:

>>> t = tuple()
>>> print t
()

If the argument is a sequence (string, list or tuple), the result of the call to tuple
is a tuple with the elements of the sequence:
>>> t = tuple('lupins')
>>> print t
('l', 'u', 'p', 'i', 'n', 's')

Most list operators also work on tuples. The bracket operator indexes an element:
>>> t = ('a', 'b', 'c', 'd', 'e')
>>> print t[0]
'a'

And the slice operator selects a range of elements.
>>> print t[1:3]
('b', 'c')

But if you try to modify one of the elements of the tuple, you get an error:
>>>t[0] = 'A'

Comparing tuples

The comparison operators work with tuples and other sequences; Python starts by
comparing the first element from each sequence. If they are equal, it goes on to the
next element, and so on, until it finds elements that differ

>>> (0, 1, 2) < (0, 3, 4)

Tuple assignment

>>> m = ['have', 'fun']
>>>x, y = m
>>>x
'have'
>>>y
'fun'

Python roughly translates the tuple assignment syntax to be the
following

>>> m = ['have', 'fun']
>>> x = m[0]
>>> y = m[1]
>>>x
'have'
>>>y
'fun'

>>> m = ['have', 'fun']
>>> (x, y) = m
>>>x
'have'
>>>y
'fun'

tuple assignment allows us to swap the values of two variables in a single statement:
>>>a, b = b, a

For example, to split an email address into a user name and a domain, you could
write:
>>>addr = 'monty@python.org'
>>>uname, domain = addr.split('@')

Multiple assignment with dictionaries

d = {'a':10, 'b':1, 'c':22}

fork,v in d.items()

printk,v

Using tuples as keys in dictionaries

Because tuples are hashableand lists are not, if we want to create a composite key to use in a
dictionary we must use a tuple as the key. We would encounter a composite key if we wanted to
create a telephone directory
that maps from last-name, first-name pairs to telephone numbers. Assuming
that we have defined the variables last, first and number, we could write a
dictionary assignment statement as follows:
directory[last,first] = number

The expression in brackets is a tuple. We could use tuple assignment in a for loop
to traverse this dictionary.
for last, first in directory:
print first, last, directory[last,first]

+ and * on tuples

We can use sum(), max(), min(), len(),sorted() functions with tuple. Run the following and understand

how these functions works with tuple.

X=(12,22,33,2)

print (sum(X))

print (max(X))

print (min(X))

X=("Rama", "Abhi", "Anuj")

print (max(X))

print (min(X))

print (sorted(X))

print (sorted(X, reverse=True))

Comparing tuples

Usually, The function cmp() compares the values of two arguments x and y:

cmp(x,y)

The return value is:

A negative number if x is less than y.

Zero if x is equal to y.

A positive number if x is greater than y.

The built-in cmp() function will typically return only the values -1, 0, or 1.

X,Y=(12,33),(22,44)

print(cmp(x,y))

print (cmp(y,x))

X,Y=(12,33,5),(22,44,2)

print(cmp(x,y))

print (cmp(y,x))

X,Y=(12,33),(12,33)

print(cmp(x,y))

print (cmp(y,x))

We can use all(), any(), enumerate functions with tuples. For example, all() function returns true if all

the elements are true (or tuple is empty); otherwise returns False(if the the tuple is emply also it returns

False). Similarly, any() method returns True if atleast one of its elements is True; otherwise falls.

enumerate prints all elements of the tuple along with their index.

x=(992,33,33,None)

print (any(x))

print (all(x))

for y in enumerate(x):

print (y)

x=(992,33,33,45,55,66)

for y in enumerate(x):

print (y)

for y in enumerate(x,3):

print (y)

X=[[i,j] for i,j in enumerate(x)]

print (type(X))

print (X)

X=[(i,j) for i,j in enumerate(x)]

print (type(X))

print (X)

X=((i,j) for i,j in enumerate(x))

print (type(X))

print (X)

X=[{i,j} for i,j in enumerate(x)]

print (type(X))

print (X)

X={i:j for i,j in enumerate(x)}

print (type(X))

print (X)

The following program illustrates the use of sorted(), reversed(), zip() methods with tuples.

albums = ('A', 'B', 'C', 'D')

years = (1976, 1987, 1990, 2003)

for album in sorted(albums):

print (album)

for album in reversed(albums):

print (album)

for i, album in enumerate(albums):

print (i, album)

for album, yr in zip(albums, years):

print (yr, album)

Convert a tuple to a string
t=(1,2,3,4,5)

str(t)

Sets and Frozen Sets

1. Sets do not contain duplicates; if we add a valute that already is in a set, the set remains

unchanged; this means we can often add a value to a set without first checking if it is in

the set: if it isn’t in the set, it is added; if it is in the set, the set remains unchanged.

2. Sets are unordered: we cannot index different values, and when we iterate through them

the order of the values produced is not fixed (like dictionaries)

3. All values in sets (like keys in dictionaries) must be immutable. So we can have sets of

tuples, but not sets of lists.

4. a = set() is the empty set (no/0 values)

5. b = {‘a’, b’, ‘c’} is a set of str

6. c = { 1, 2, 4, 5} is a set of integers

7. d = {(‘NB’,’Venkat’), (‘GV’, ‘Saradamba’)} is a set of tuples

s=()

ss={}

sss={1}

ssss={'a':12}

sssss=set()

print type(s)

print type(ss)

print type(sss)

print type(ssss)

print type(sssss)

Set operations

1. len(): We can compute the length of a set (number of values at the top-level). For

example, the with the sets defined above,

len(a) is 0; len(b) is 3; len(c) is 4; len(d) is 2

2. We cannot index the sets as the values in sets are unordered.

3. Slicing is not possible with sets

4. Checking containment: the in/notin operators can be used with sets. These operators

work on the values in a set. For example,

‘a’ in set of a (above) is False

‘a’ in set b is True;

5. We can notCatenate sets

6. We can not use Multiplication with sets

7. We can iterate over elements of a set using for loop. For example, the following program

allows us to iterate over the set b.

b={'a', 'b', 'c'}

for i in b:

print(i)

alist=[1, 2, 3, 5,2,9,3]

aset = set(alist)

printlen(aset), len(alist)

printalist

printaset

Asaset has no duplicated values, its length will be smaller than or equal to alist

#We can generate a list from a set

blist = list(aset)

printlen(blist),len(aset)

printaset

printblist

#Length of aset and blist will be exactly same

Set Objects

Instances of Set and ImmutableSet both provide the following operations:

Operation Equivalent Result

len(s) number of elements in set s (cardinality)

xins test x for membership in s

xnotins test x for non-membership in s

s.issubset(t) s<=t test whether every element in s is in t

s.issuperset(t) s>=t test whether every element in t is in s

s.union(t) s|t new set with elements from both s and t

s.intersection(t) s&t new set with elements common to s and t

s.difference(t) s-t new set with elements in s but not in t

s.symmetric_difference(t) s^t new set with elements in either s or t but not both

s.copy() new set with a shallow copy of s

Frozen Sets Frozen sets are immutable objects that only support methods and operators that

produce a result without a?ecting the frozen set or sets to which they are applied.

Python program to demonstrate differences
between normal and frozen set

Same as {"a", "b","c"}
normal_set =set(["a", "b","c"])

Adding an element to normal set is fine
normal_set.add("d")

https://docs.python.org/2/library/sets.html#sets.Set
https://docs.python.org/2/library/sets.html#sets.ImmutableSet

print("Normal Set")
print(normal_set)

A frozen set
frozen_set =frozenset(["e", "f", "g"])

print("Frozen Set")
print(frozen_set)

Uncommenting below line would cause error as
we are trying to add element to a frozen set
frozen_set.add("h")

1. add(x) Method: Adds the item x to set if it is not already present in the set.

people = {"Jay", "Idrish", "Archil"}

people.add("Daxit")

union(s) Method: Returns a union of two set.Using the ‘|’ operator between 2 sets is the same as

writing set1.union(set2)

people = {"Jay", "Idrish", "Archil"}

vampires = {"Karan", "Arjun"}

population = people.union(vampires)

OR

population = people|vampires

3.intersect(s) Method: Returns an intersection of two sets.The ‘&’ operator comes can also be

used in this case.

victims = people.intersection(vampires)

-> Set victims will contain the common element of people and vampire

4. difference(s) Method: Returns a set containing all the elements of invoking set but not of the

second set. We can use ‘-‘ operator here.

safe = people.difference(vampires)

OR

safe = people – vampires

-> Set safe will have all the elements that are in people but not vampire

5. clear() Method: Empties the whole set.

victims.clear()

-> Clears victim set

However there are two major pitfalls in Python sets:

Operators for Sets

Sets and frozen sets support the following operators:

key in s # containment check

key not in s # non-containment check

s1 == s2 # s1 is equivalent to s2

s1 != s2 # s1 is not equivalent to s2

s1 <= s2 # s1is subset of s2

s1 < s2 # s1 is proper subset of s2

s1 >= s2 # s1is superset of s2

s1 > s2 # s1 is proper superset of s2

s1 | s2 # the union of s1 and s2

s1 & s2 # the intersection of s1 and s2

s1 – s2 # the set of elements in s1 but not s2

s1 ˆ s2 # the set of elements in precisely one of s1 or s2

Python program to demonstrate working# of
Set in Python

Creating two sets
set1 =set()
set2 =set()

Adding elements to set1
fori inrange(1, 6):
 set1.add(i)

Adding elements to set2
fori inrange(3, 8):
 set2.add(i)

print("Set1 = ", set1)
print("Set2 = ", set2)
print("\n")

Union of set1 and set2
set3 =set1 | set2# set1.union(set2)
print("Union of Set1 & Set2: Set3 = ", set3)

Intersection of set1 and set2
set4 =set1 & set2# set1.intersection(set2)
print("Intersection of Set1 & Set2: Set4 = ", set4)
print("\n")

Checking relation between set3 and set4
ifset3 > set4: # set3.issuperset(set4)
 print("Set3 is superset of Set4")
elifset3 < set4: # set3.issubset(set4)
 print("Set3 is subset of Set4")
else: # set3 == set4
 print("Set3 is same as Set4")

displaying relation between set4 and set3
ifset4 < set3: # set4.issubset(set3)
 print("Set4 is subset of Set3")
 print("\n")

difference between set3 and set4
set5 =set3 -set4
print("Elements in Set3 and not in Set4: Set5 = ", set5)
print("\n")

checkv if set4 and set5 are disjoint sets
ifset4.isdisjoint(set5):
 print("Set4 and Set5 have nothing in common\n")

Removing all the values of set5
set5.clear()

print("After applying clear on sets Set5: ")
print("Set5 = ", set5)

Dictionaries
A dictionary is like a list, but more general. In a list, the positions (a.k.a. indices)
have to be integers; in a dictionary the indices can be (almost) any type

a dictionary as a mapping between a set of indices (which are called keys) and a set of values.
Each key maps to a value.
The association of a key and a value is called a key-value pair or sometimes an item.

The function dictcreates a new dictionary with no items. Because dictis the

name of a built-in function, you should avoid using it as a variable name.
>>> eng2sp = dict()
>>> print eng2sp

The squiggly-brackets, {}, represent an empty dictionary. To add items to the
dictionary, you can use square brackets:
>>>eng2sp['one'] = 'uno'

If we
print the dictionary again, we see a key-value pair with a colon between the key
and value:
>>> print eng2sp

create a new dictionary with three items:
>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

>>> print eng2sp
{'one': 'uno', 'three': 'tres', 'two': 'dos'}

The order of the key-value pairs is not the same.
In general, the order of items in a dictionary is unpredictable.
But that’s not a problem because the elements of a dictionary are never indexed
with integer indices. Instead, you use the keys to look up the corresponding values:
>>> print eng2sp['two']

The lenfunction works on dictionaries; it returns the number of key-value pairs:
>>>len(eng2sp)
3

The in operator works on dictionaries; it tells you whether something appears as
akey in the dictionary.
>>> 'one' in eng2sp
True
>>> 'uno' in eng2sp
False

To see whether something appears as a value in a dictionary, you can use the
methodvalues, which returns the values as a list, and then use the in operator:
>>>vals = eng2sp.values()
>>> 'uno' in vals
True

The in operator uses different algorithms for lists and dictionaries. For lists, it
uses a linear search algorithm. As the list gets longer, the search time gets longer
in direct proportion to the length of the list. For dictionaries, Python uses an
algorithm called a hash table

Dictionary as a set of counters
Suppose you are given a string and you want to count how many times each letter
appears

Dictionaries have a method called getthat takes a key and a default
value. If the key appears in the dictionary, get returns the corresponding value;
otherwise it returns the default value

>>>h.get('a', 0)
1
>>>h.get('b', 0)

0

Looping and dictionaries

Again, the keys are in no particular order.
If you want to print the keys in alphabetical order, you first make a list of the keys
in the dictionary using the keys method available in dictionary objects, and then
sort that list and loop through the sorted list

We can convert a list of lists into a dictionary
grades=dict([['A',10],['B',8],['C',6], ['D',4],['E',2]])
print(grades)
print(type(grades))

Dictionary Methods

Dictionaries have a number of useful built-in methods. The following table provides a summary

and more details can be found in the Python Documentation.

Method Parameters Description

keys None Returns a view of the keys in the dictionary

values None Returns a view of the values in the dictionary

items None Returns a view of the key-value pairs in the dictionary

get Key Returns the value associated with key; None otherwise

get key,alt Returns the value associated with key; alt otherwise

terse={}
terse['abscond']='Dis-appear without knowledge'
terse['mutable']='able to change'
terse['abstain']='stop from voting'
terse['abbey']='A place where people will pray for god'
terse['awkward']='Not in proper order'

for k in terse:
print ("Key",k)

kys=list(terse.keys())
print(kys)

for k in terse.keys():
print("Key",k)

http://docs.python.org/py3k/library/stdtypes.html#mapping-types-dict

Aliasing in Dictionaries
Whenever two variables refer to the same dictionary object, changes to one affect the other. This
problem is known as aliasing problem which we did encounter in lists also. In order to avoid this, we can
use copy() method of dictionary class to create a copy of it.

terse={'abscond':'Dis-appear without knowledge', 'mutable':'able to change','abstain':'stop from voting'}
compact=terse
print(compact is terse)
print(terse)
print(compact)
compact['abstain']='xxxxx'
print(terse)
print(compact)

concise=terse.copy()
print(concise is terse)
concise['abstain']='stop from voting'
print(terse)
print(concise)terse={'abscond':'Dis-appear without knowledge', 'mutable':'able to change','abstain':'stop
from voting'}
compact=terse
print(compact is terse)
print(terse)
print(compact)
compact['abstain']='xxxxx'
print(terse)
print(compact)

concise=terse.copy()
print(concise is terse)
concise['abstain']='stop from voting'
print(terse)
print(concise)

Another way of constructing
>>>dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])

{'sape': 4139, 'jack': 4098, 'guido': 4127}

In addition, dict comprehensions can be used to create dictionaries from arbitrary key and value

expressions:

>>>
>>> {x: x**2 for x in (2, 4, 6)}

{2: 4, 4: 16, 6: 36}

When the keys are simple strings, it is sometimes easier to specify pairs using keyword

arguments:

>>>
>>>dict(sape=4139, guido=4127, jack=4098)

{'sape': 4139, 'jack': 4098, 'guido': 4127}

When looping through dictionaries, the key and corresponding value can be retrieved at the same

time using the items() method.

>>>
>>>knights = {'gallahad': 'the pure', 'robin': 'the brave'}

>>>for k, v in knights.items():

... print(k, v)

...

gallahad the pure

robin the brave

When looping through a sequence, the position index and corresponding value can be retrieved

at the same time using the enumerate() function.

>>>
>>>for i, v in enumerate(['tic', 'tac', 'toe']):

... print(i, v)

...

0 tic

1 tac

2 toe

questions=['name','quest','favoritecolor']

>>>answers=['lancelot','the holy grail','blue']

>>>forq,ainzip(questions,answers):

... print('What is your {0}? It is {1}.'.format(q,a))

...

What is your name? It is lancelot.

What is your quest? It is the holy grail.

What is your favoritecolor? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward direction and then call

the reversed() function.

>>>
>>>for i in reversed(range(1, 10, 2)):

... print(i)

...

9

7

5

https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/library/functions.html#reversed

3

1

chr(i)

Return a string of one character whose ASCII code is the integer i. For example, chr(97)

returns the string 'a'. This is the inverse of ord()

Dictionary Comprehensions

P = {x: x ** 2 for x in range(5)}

print(P)

Q = {x: 'A' + str(x) for x in range(10)}

print(Q)

grades = {x: chr(70-x//2) for x in range(2,11,2)}

print(grades)

#inverting the dictionary of grades

points={v: k for k, v in grades.items()}

print(points)

numbers = [i for i in xrange(1,11)] + [i for i in xrange(1,6)]
print(numbers)

unique_numbers = []
for n in numbers:
if n not in unique_numbers:
unique_numbers.append(n)

print(unique_numbers)

#using dictionary comprehension
unique_numbers1={ d:d for d in numbers }.values()
print(unique_numbers1)

Some times, we want to initialize all values of a dictionary with 0 or none. For this, we can use list
comprehension or dict.fromkeys() method as shown below.

fromkeys() is a class method that returns a new dictionary. value defaults to None.

x={k:0 for k in range(10)}
y={k:Nonefor k in range(10)}

z=dict.fromkeys(range(10))

Dictionaries for Sparse Matrices

https://docs.python.org/2/library/functions.html#ord
https://docs.python.org/2/library/stdtypes.html#dict.fromkeys

m={(0,3):1,(2,1):2,(3,2):1}

matrix = {(0, 3): 1, (2, 1): 2, (4, 3): 3}

print(matrix.get((0,3)))

print(matrix.get((1, 3), 0))

o/p

{(0, 0): 0, (0, 1): 1, (0, 2): 2, (0, 3): 3, (1, 0): 1, (1, 1): 2, (1, 2): 3,

(1, 3): 4, (2, 0): 2, (2, 1): 3, (2, 2): 4, (2, 3): 5, (3, 0): 3, (3, 1): 4,

(3, 2): 5, (3, 3): 6}

writedict for it

uses nested dictionary comprehension generates a dictionary of an identity matrix of size 4x4.

o/p {(0, 0): 1, (0, 1): 0, (0, 2): 0, (0, 3): 0, (1, 0): 0, (1, 1): 1, (1,

2): 0, (1, 3): 0, (2, 0): 0, (2, 1): 0, (2, 2): 1, (2, 3): 0, (3, 0): 0, (3,

1): 0, (3, 2): 0, (3, 3): 1}

Assume that you have a list a set of words and you want to display how many times each word has
appeared. We use dictionary comprehension to achieve this

mylist = ['hello', 'hi', 'hello', 'today', 'morning', 'again', 'hello']

mydict = {k:mylist.count(k) for k in mylist}

print(mydict)

